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ABSTRACT

Nonlinear analysis methods are developed which will enable
the reliable prediction of the dynamic behavior of the space
shuttle main engine (SSME) turbopumps in the presence of bear-
ing clearances and other local nonlinearities.

A computationally efficient convolution method, based on
discretized Duhamel and transition matrix integral formula-
tions, is developed for the transient analysis. In the formu-
lation, the coupling forces due to the nonlinearities are
treated as external forces acting on the coupled subsystems.
Iteration is utilized to determine their magnitudes at each
time increment. The method is applied to a nonlinear generic
model of the high pressure oxygen turbopump (HPOTP). As
compared to the fourth order Runge Kutta numerical integration
methods, the convolution approach proved to be more accurate
and highly more efficient. |

For determining the nonlinear, steady-state periodic
responses, an incremental harmonic balance (IHB) method was
also developed. The method was successfully used to determine
dominantly harmonic and subharmonic (subsynchronous) responses
of the HPOTP generic model with bearing clearances. A reduc-
tion method similar to the impedance formulation utilized with
linear systems is used to reduce the housing-rotor models to
their coordinates at the bearing clearances.

Recommendations are included for further development of
the method, for extending the analysis to aperiodic and chaotic
regimes and for conducting critical parametric studies of the

nonlinear response of the current SSME turbopumps.
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NOMENCLATURE

Cosine coefficients associated with Master degrees
of freedom

Incremental vector of {Ag}

nth cosine coefficient of the steady state solution
in x, y~direction at ith node

Cosine coefficients associated with Slave degrees of
freedom

nth since coefficient of the steady state solution
in x, y-direction at ith node

Structural damping matrix

Constant cosine coefficient vector of nonlinear

force

nth cosine coefficient of nonlinear force in x,
y-direction

Cosine coefficients of nonlinear force associated
Master degree of freedom

Cosine coefficients of nonlinear force associated
Slave degree of freedom

Generalized damping matrix of rotor model

Constant sine coefficient vector of nonlinear force
nth sine coefficient of nonlinear force in x,
y-direction

Mass eccentricity of disks

Nonlinear restoring force vector in x, y-direction

at ith node



{gcras}
[G]
HixrHiy
(~I_]
(K]

Kp

[K]

(M]

iii

Imbalance forces on rotor

The coupling force vector on the housing due to the
rotor

Imbalance force vector of cosine, sine terms

Gyroscopic matrix

= X,y rectilinear housing displacement at ith node

Identity matrix

Structural stiffness matrix

Bearing stiffness

Equivalent constant coefficient stiffness matrix
Mass matrix

Generalized force (modal force)

Generalized displacement (modal displacement)
Transition matrix

Trigonometric coefficients associated with Master
degrees of freedom

Trigonometric coefficients with nth harmonic mode in

Master degree of freedom

Incremental vector form of {an}

Trigonometric coefficients associated Slave degrees
of freedom

Overall incremental coefficient vector

X,y rectilinear displacement at ith node

Total trigonometric coefficient matrix

Equivalent trigonometric coefficient matrix

Overall coefficient matrix



iv

Time
Time increment
Time at iT

q
{.}, Generalized coordinates of rotor

q
equivalent trigonometric force vector
Overall incremental coefficient vector of nonlinear
force

Constant trigonometric coefficient vector of
nonlinear force

Trigonometric coefficients of nonlinear force
associated with Master degree of freedom
Trigonometric vector of nonlinear force with nth
harmonic mode in Master degree of freedom
Incremental vector of {wgn} .

Overall force vector

= Rational displacement in x,y-direction at ith node

Gap size

Subharmonic ratio

The rotor state matrix

Diagonal eigenvalue matrix

Spinning speed of rotor

Normalized modal matrix

Damping ratio

Natural frequency and damped natural frequency

Null matrix



Superscript

i

Y

Subscript

XeYel2

B, b

H

ith node

The node number at which disk is located

Bearing related term

Housing related term

External, imbalance

Coupling

ith time increment

Total number of degrees of freedom associated with
linear motion

Total number of degrees of freedom associated with
nonlinear coupling nodes

Total number of degrees of freedom (M = L+N)

Rotor related term

Master degree of freedom

nth harmonic mode

Slave degree of freedom

x-direction

y-direction

X,Yrz-direction

Other Symbols

{

!

it

Vector
Square matrix -
Diagonal matrix

Column matrix
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1. INTRODUCTIGCN

1.1 Background

Modern complex rotating machinery contain various sources
of strong nonlinearities. These include clearances in bear-
ings, gears and splines, rubbing in splines, seals and rotor
blades, squeeze film dampers and other fluid effects. Cbserved
nonlinear behavior of actual rotor systems includes jump
discontinuities (Erich, 1966), large subsynchronous motion
(Bently, 1979, Muszynska, 1984, and Beatty, 1985), quasi-peri-
odic response and possible chaos (Neilson and Barr, 1988). As
stated by Nataraj and Nelson (1987), the future developments in
modern machines heavily depends on the ability to identify,
understand, mathematically model and analyze systems involving
nonlinear components.

The turbopumps of the space shuttle main engine (SSME) are
complex rotor-housing systems. Their response and stability
can be critically dependent on the coupling forces between
their flexible rotors and housings, transmitted through the
working fluids, seals and bearings. Of particular concern is
the effect of the existing essential deadband clearances
between the ball bearings and housing. These clearances cause
a turbopump rotor to respond as a nonlinear dynamic system. In
general, the rotor-housing system could, consequently, exhibit

undesirable subharmonic, combination and internal resonances



(Tondl, 1965). It could also respond in an aperiodic or
unpredictable chaotic fashion (Shaw and Holmes, 1983 and
Neilson and Barr, 1988). The transient response of the rotor
in passing through a critical speed can be quite different in
the presence of a nonlinearity (Ishida et. al., 1987).

Childs and Moyer (1984), using a Runge-Kutta integration
scheme, carried out a transient nonlinear analysis of the HPOTP
(high pressure oxygen turbopump) of the SSME and reproduced a
subsynchronous rotor response similar to that observed in
experimental test results. They attributed the subsynchronous
response to the presence of the bearing clearances and desta-
bilizing impeller-diffuser forces. Glease and Bukley (1984)
examined the effects of bearing deadbands on a modified Jeff-
cott model subjected to seal cross coupling forces and
described responses of the rotor to imbalance forces of the
subsynchronous, synchronous and nonperiodic type. Using a
similar model as that of Glease (1984), Day (1987) and Zalik
(1987) addressed some aspects of the response in the presence
of bearing clearances and cross coupled seal forces as leading
to a limit cycle with a "nonlinear natural frequency." For
certain ranges of the systems parameters, quasi-periodic
response of the rotor can occur.

Quite often, it is essential to determine the steady state
periodic response of rotor systems in the form of self excited
limit cycles or forced motion due to rotating unbalance.

Accurate prediction of the nonlinear periodic responses and



their stability plays a central role in developing a complete

picture of the dynamic behavior of nonlinear rotor systems as a

function of their parameters. Efficient general methods are

obviously needed for determining directly possible periodic
solutions of large rotor-housing systems involving nonlineari-
ties. In contrast, a direct numerical integration method used
to obtain the steady state periodic solutions:

a. Will require much longer computational time for the rela-
tively lightly damped rotor systems to settle to a steady
state.

b. Will determine only stable periodic responses and not the
unstable solutions which may be used to indicate the
onsets of transition to chaotic responses.

cC. Might miss a close-by large steady state solution from
among multiple nonlinear solutions due to an unfortunate

selection of initial conditions.

1.2 Objectives and Outline of Study

The main objective of this study is to develop reliable
and efficient analytical-computational methods of the nonlinear
dynamic analysis of large, rotor-housing systems such as the
turbopumps of the space shuttle main engines (SSME). ‘

The present study examines some aspects of the nonlinear

behavior of a general multi-disk rotor-housing system. For

that purpose, a generic model of the SSME turbopumps proposed



by Pavis et al. (1984) is used to which new nonlinear analysis
methods developed by the present author and co-researchers are
applied. One of the methods extends an incremental harmonic
balance method developed earlier by Choi and Noah (1987) to

the determination of the periodic response of multi-degree of
freedom rotor systems. Associated with this method, a Quasi-
Newton method was also developed to enable the determination of
possible multiple solutions for a given set of rotor parame-
ters. For the transient analysis, a convolution method is
fully developed which takes advantage of the fact that a turbo-
pump system consists of a linear rotor model coupled to a
linear housing model through a local nonlinearity, that is,
bearings with clearances, to construct a highly efficient and
accurate computational procedure. The method can be equally
applied in presence of other coupling nonlinearities between

the rotor and housing.



2. NONLINEAR ROTCRDYNAMIC ANALYSIS OF LARGE SYSTEMS

2.1 Transient Analysis Methods

The direct numerical integration for determining the
transient response of larger nonlinear rotor-flexible housing
systems may require excessive computational time and involve
unacceptable round-off errors. To remedy these problems
different procedures have been developed by analysts to deter-
mine the transient response of large order rotor systems. The
procedures can be recognized as falling under one of two basic
approaches. Those using physical or modal coordinates of the
complete system and those using the coordinates of the individ-
ual components of the system. The methods also differ in the
numerical integration methods selected for the analysis. A
comprehensive review of existing transient analysis techniques
can be found in a report by Noah (1986).

An effective method which proves to be highly efficient in
determining the transient response of linear systems under
. specified general excitations is by utilizing the Duhamel
integral, or more generally, the transition matrix of the
system (Meirovitch, 1980). Von Pragenau (1981) utilized the
transition matrix with a linear system, stating that it offers
the simplicity of the Euler method without requiring small
steps. Von Pragenau maintained that for systems with constant

coefficients, the stability and accuracy of the method are



acquired through the closed form solution of the transition
matrix.

In the present study, the convolution methods (Duhamel and
transition) are shown to be very effective when extended for

application to linear systems with local nonlinearities. The

forces at the nonlinear locations are treated as the external
forces on the systems or subsystems and iteration is used at
each time increment to determine the magnitude of the forces
for subsequent increments.

The convolution approach is applied to a general rotor-
housing system with rotor imbalance during start-up or shut-
down. In the present work, eigen-coordinates are used to
represent both housing and rotor. The local nonlinearities
were taken as deadband clearances at the rolling element bear-
ings which support the rotor in its housing as in the SSME
turbopumps. The integral formulation of the rotor motion is
represented by its transition matrix and that of the housing by
a Duhamel integral. Kubomura (1985) used a Duhamel integration
method to achieve dynamic condensation of a substructure to its
coupling points to other structures. Convolution was also used
by Tongue and Dowell (1983), and Clough and Wilson (1979) to

reduce system coordinates to that of the nonlinearities.

2.2 Periodic Solutions

Several methods have recently been advanced for deter-

mining the periodic response of low order nonlinear rotor



systems (Yamamoto 1954, Childs 1982, Saito 1985, and Choi and
Noah 1987). For application to larger, multi-disk rotor sys-
tems, Nataraj and Nelson (1987) developed a periodic solution
method based on a collocation approach for the response of the
rotor. They utilized a subsystem approach (Cipra and Uicker,
1981) to reduce the size of the resulting system of algebraic
equations.

In this report, a general approach for the determination
of the synchronous and subsynchronous response of complex rotor
systems is presented. The present work extends the harmonic
balance method developed earlier (Saito 1985, and Choi and
Noah 1987 and 1988) for a modified Jeffcott rotor model with
bearing clearances to the determination of the periodic
response of nonlinear multi-disk rotor systems with flexible
housings.

It is shown that the harmonic balance method, as applied
to a large, rotor-housing system with bearing clearances, can
be made to be highly efficient. This is achieved by using a
version of an impedance formulation in which the system is
reduced to its displacements at the bearing clearances. (See
Noah, 1984 and Fan and Noah, 1989). In this case, the
impedance method is applied to each of the harmonic components

of the assumed periodic solution.



3. APPLICATION TO ROTOR-HOUSING SYSTEMS

3.1 The Model

A representative complex rotor system with flexible
housing is shown in Fig. 1. The particular model shown in
which the present method can be readily applied, represents the
high pressure oxygen turbopump (HPOTP) of the space shuttle
main engine (SSME). The interaction forces between rotor and
housing include various seal, impeller, turbine tip clearance,

bearing clearance and fluid side forces.
a. = Rotor

The equation of small transverse motion, {R} of the rotor
under transient external and imbalance forces may be written as

[M]R {ii} - ¢ [G] {é} + [Klg {R}] = {FI}R+ {FE}R (1)

In equation (1), {R} represents the translational and rota-
tional displacements and only includes those displacements
which are associated with masses and diametral moments of

inertia. Other displacements are reduced out using static

condensation. The spinning speed of the rotor is denoted by ¢
(see Fig. 2), [G] is the gyroscopic matrix corresponding to the

attached disks, {F represents the coupling forces on the

I}R

rotor due to coupling to the housing while {F represents the

BIR

external forces including the imbalance forces.

Let {R} = [¥I; {a}y (2)



Housing

Bearings Impellers Bearings S%fls

Figure 1. Complex rotor system with flexible housing.



Figure 2.

The rotor coordinate system.
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in which [‘i’]P is the modal matrix, normalized with respect to
the mass matrix of the nonspinning rotor and {q}R is the asso-

ciated modal coordinates.
Using the modal transformation (2), equation (1) is

written in the form

- T - T
- , ¥ =
talp = Y1 ¢ (6l ¥1g {aly + 081, {aby = 1¥1; (F b p+{Fplp)
(3)
Where N
wn are the natural frequencies of the nonspinning of the rotor.

Adding a modal damping matrix ["C.] to equation (3) yields

; : ) o
{alg + Ig talg + Caclg {abg = g dFrpdp + {Flp) (4)

where [Dlp = ["Calp - (Y1p ¢ (Gl (¥l (5)
[FCalp = [T28wpni], (6)
b. Housing

The equation of motion of the housing may be expressed as
(M1, {H} + (K], {a} = {FI}H (7)

where {H} represents the transverse and rotational displace-
ments at each node in the Y and Z directions. 1In terms of the
modal coordinates of the housing while uncoupled to the rotor,
equation (7) takes the form (after adding a modal damping

matrix)
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T

faly + oIy {aly + Uaddg faby = ¥l ({Fphg + {Fply) (8)
‘here [D]H = [‘C\]H = [‘2£wn\]H (9)
N - <, 2
[*Ady = [enddy (10)

Ce. Coupling Forces

Forces due to linear coupling between rotor and housing
may include the direct and cross coupling forces due to seal,
impeller and turbine forces. The nonlinear coupling forces are
taken as those due to the clearances between the rolling
element bearings outer races and the housing. Fig. 3 shows a
model for the gap at each of the loosely supported bearing.

The bearing force acting on the housing due to the
stiffness, shown in Fig. 4 in the Y-direction, is

Ky, (R=6) Ry ~fy for R > 6

R

(F

B)Y

(Fo)y, = 0 for R < &

B'Y

Analogous equations hold for the 2 direction, in which KByis

the stiffness at the bearing support and

_ ~ 2 _ 2
R= "(Ry - Hy)® + (R, - H,)
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rotor

Figure 2. ' 1
g Fotor and housing displacements at bearing location
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A Fpy
slope = KBY
< — ]
4 5
Y

Figure 4. DNonlinear bearing force, in Y-direction FB due to KBY

Y’



where

Ry

is the physical displacement of rotor in

Y direction at the bearing location.

is the physical displacement of housing in
Y direction at the bearing location.

is the physical displacement of rotor in

Z direction at the bearing location.

is the physical displacement of housing in

Z direction at the bearing location.

The bearing forces in the Y and Z-directions can be written as

Where

(Eb

'z

K

K

B

B

H

Kpy (Ry = Hy)

KBZ(RZ - Hy)

= -3
= Kg (1 - 3) for R > ¢

= 0 for R < ¢

(11)

(12)

(13)

(14)
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3.2 Method for Transient Analysis

A hybrid method proposed by Noah et al. (1986) and (1988)
is utilized here for the analysis of the coupled rotor-housing
system. The displacements of the housing are best represented
by a Duhamel integral. Due to the presence of the skew-sym-
metric gyroscopic terms, the equations of motion for the rotor
are transformed to first order. The displacements of the rotor

are expressed in terms of the transition matrix for the motion

of the rotor.

3.2a Transition matrix for the rotor

The equations of motion of the rotor, equation (4), are

cast in first order form,

_ (0] [*I.]
where [alp = -[allg - [DIg e
0
o ] 17)
{Plg U¥lg ({Frlg + {Fglp) |

If the spinning speed is a function of time, the gyro-
scopic term of equation (5) is ‘moved to the R.H.S. of equation

(4). In this case, the coefficient matrices, given by equa-

tions (16) and (17), are replaced by
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(0] 1)
[a]R = _ (16')
-[CAd g -DCadg
and
0 0
Ble = T (e dy + {egl{ * ] o0 etaigrviglal, | A7)

In that case it may be computationally more efficient to use
the Duhamel integral, rather than the transition matrix formu-
lations to represent the rotor. The formulation using the
Duhamel integral is applied to the housing as is shown later.
In general, however, if the physical rather than the modal
coordinates are used to describe the motion of the rotor, or if
& is constant and is kept at the left hand side of the equa-
tions of motion, the transition matrix and not the Duhamel

formulation method must be used.

The solution of equation (15) can be written as

[a] _t t [a] (t=-T)
- R F
fuce)t, = e fu b + fo e {p(ry}y at (18)
[] ot = [a]f K
where e = X ——Ef——— = transition matrix (19)
k=0 :
and {uo} is the initial generalized coordinates

Equation (18) can be cast in discretized form in which the
generalized forces, {P}R, are taken as varying linearly between

time tj and tj4+1 so that
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{P(t) ] = [P(tj)} + —r ({P(ti+1)} = {P(ti)}),
ti £t <tiy)
and tj4] =t + T

Where T is a small increment in time. The discretized

form of equation (18) can then be shown to take the form

fult; ) g = [QUT)] {ult;)jp + ([Q(T) - [~I.]) [a];I({P(ti)}R

-1 (Pl ) g - {BUED) -1
* lalg T ) = lalg” ({PCty ) Jp = {PUt) JR)
(20)
[al T
where [Q(T)] = e : (21)

3.2b Duhamel integral for housing

The symmetric form of the equations of motion of the hous-
ing allows expressing the modal displacements of the housing by
a Duhamel integral. The integral formulation has the advantage
of providing a closed form expression as opposed to conven-
tional numerical integration schemes. Also this representation
allows dealing directly with diagonal matrices which results in
higher computational speed and accuracy.

Based on equation (8), the housing generalized coordinates

can be expressed as
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-Ewnt
{q(t)}H = [“e cos wgt.] {q(O)}H

1 -fwnt . .
gD e sin wgt.] ({g(0)}, + gup{q(o)}y)

t -fwp(t=-1)
+ L e . sin wg (t-1).] {P(1)}, d7 (22)
o wd d b H
where {q(0)}, {q(0)} are initial solutions, wp, wg are
undamped and damped natural frequencies of housing,
£ is damping ratio of housing, {P(t)}, = [W]g({FI}H +

{F H) the generalized forces act on housing.

gl

The expression (22) is next written in discretized fornm,
with the generalized forces taken as before as varying linearly

within each time step, or

_ Tatis)
{alti+1)}y = [Ce cos btis+1.] {q(0)},
—atj+] .
+ [~% e sin btir1.1({a(0)}y + a{c(0)}y)
sin bt, cos bt,
+ i+l EA, ., + 1t] EB, ;|

b(a2+b?) it pa24p?)
(23)
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. . —atis) .
falti+1)ly = [C-e 'T1(a cos btjs4] + b sin bti+1).1{q(0)},
. Tativl a . .
+ [e (- § sin btjs + cos bti+1). I1({a(0)}, + a{q(0)}y)
-a sin bt, , + b cos bt, .
b(a“+b”)
a cos bti+l + b sin bti+1 N (24)
b(a“+b™)
b = wg (26)
-aT
EAj41 = e . EAj + Aj4} (27)
EBji+1 = et EB{ + Bi+] (28)
EA: = e-ati-1 -atj-2 ,

l - e Al + e A2 + ..... + Al (29)
EBj = e"@%i-1 gy 4+ e78%i-2p, 4+ ..., + Bj (30)
A{+1 = Pj4+] (a cos btj4+1 + b sin btj4yy)

P, - P,
- —ii%——i—i (a2 cos btj4+] + 2ab sin btj4y - b2 cos bti+1)
T(a“+b™)
Piv1 7P -ar
s € (a2 cos bt; + 2ab sin btj - b2 cos btj)
T(a“+b"™)
-aT .
- P; e (a cos btj + b sin btj) (31)



21

Bj+1 = Pi4+] (a sin btj4] - b cos btj4])

Piva =B 2 . 2
- ————2———2— (a® sin bti+1 - 2ab cos bti+1" b“sin bti+]_)
T(a“+b")
P, - P,
+ —ii%——i—i e-aT(a2 sin btj - 2ab cos btj- b?sin btji)
T(a“+b™)
-aT .
- Pj e (a sin btj - b cos btj) (32)

P is element of vector {P}.

3.2c The coupling forces

The coupling forces acting on the housing are given by

= kI, ({R} - {8h + (1, ({R} - {8} ) (33)

and those on the rotor are

Where [K]1 and [C]l1 are the coupling stiffness and damping
matrices, respectively. The coupling stiffness matrix includes

the updated bilinear bearing stiffness at each iteration.

3.2d The computational procedure

For the responses at time t = tj4], the coupling forces
between the housing and rotor are unknown. An iterative tech-
nique is used to calculate these forces. The following itera-

tive loop is used in both the Hybrid and Runge Kutta methods:
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If the responses at t = tj are known and responses at

t = ti+] are desired then:

(a) set {Fr(tj+1)} = {Fr(ep)}

(b) Calculate {P}R and {P}H

(c) Solve {u(ti+1)}R and {q(ti+1)}H, {é(ti+1)}Hby the Hybrid
method (or the Runge Kutta method). Calculate the
Euclidean norm of {u(ti+1)}R and {q(ti+l)}H°

(d) Transfer {u(ti+1)}R and {q(ti+1)}H. {é(ti+1)}H back to
physical coordinates, then a new connection force
{FI(ti+1)} can be calculated.

(e) If the Euclidean norms of two consecutive iterations of
both rotor and housing are close enough then stop the
iteration and go to step (f), otherwise go to (b).

(f) Move a time increment and go to (a) until t reaches a

specified time for terminating the run.

3.3 Method for Obtaining Periodic Responses

A typical multi-disk rotor interacting with its flexible
housing through rolling element bearings with deadband clear-
ances 1is considered. The equations of motion of the rotor can

be recast from equation (1) in matrix form as

IR} + [c1IRb + kI (R) = {F b, + {F )y (34)

Where [Clr includes damping and gyroscopic terms. The

displacement vector {R} is defined as
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(R} = (R,

1x’ ly""’BMy’BMx}

where Rj and gj stand for displacement and rotation, respec-
tively, and subscript M represents the total node number.
In particular, the forces in the y-direction on the bear-

ings with clearances are expressed as

Fomy = Xpmy(Rmy = Hny) (1l - = - § - ) (35)
/%Rmy‘Hny) + (Rpz=Hpz)

where m and n denote the bearing node numbers on the rotor and
housing, respectively, and y and z denote the y-axis and z-axis
of the rotor and housing coordinates. The rotor displacements
are denoted by R while H denotes the housing response. The
symbol § represents the size of the deadband clearance between
a bearing and the housing.

The bearing forces, Fppy or Fppz, will vanish if § is
larger than the radial displacement of the rotor relative to
the housing which is the denominator in equation (35), other-
wise the bearing forces will be as given by equation (35). A
similar expression can be written for the nonlinear bearing
forces in the z-direction, which are denoted by Fppz-.

The equations of motion for the housing can be written in

the matrix form as

(Ml {H} + [Cl {H} + [KI {E} = {[F ], (36)

where [Cly represents proportional equivalent viscous

damping coefficients.
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In order to reduce the system to its displacements at the
nonlinear bearing supports, the equations of motion need to be
modified. This is achieved using a subsystem approach. The
coordinate vector can be modified so that the transverse

displacements at the gap are listed first

{R} = {Rly,Zy,...,Ny’Rlz,2z,...,Nz’R(N+1)y,(N+2)y,...,My’

R(N+l)z](N+2)z’...’MZ}T

where (1,2,...,N) is the bearing node numbers related to non-
linearity while (N+1,N+2,...,M) is the other node numbers
involving linear displacements which will be eliminated in the
assembling procedure.

The housing coordinate vector can be rearranged in a simi-
lar fashion. After rearranging the coordinate vectors, the

matrices [M]R,[M]H,[C]R,[C]H,[K]R and (K] and other force

Hl
vectors also need to be modified according to their vector

components.

3.3a Computational harmonic balance method

Extending the procedure developed by Choi and Noah (1987),
a steady state, a periodic solution for the motion of the rotor
can be represented by a Fourier series expansion. For the

displacement of the ith node, one writes
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. N . ,
. = al 1 nwt 1 . nwt
Riy = Agy * nil (Any cos = + B sin =) (37a)
b YRl nut i _. net
Riz = Cy, + zl (Anz cos = + B sin = ) (37b)
n=

where v is the subharmonic ratio, which is unity for harmonic
and superharmonic cases, or an integer for subharmonic cases.
Similar equations are written for the displacements Hiy and Hjz
of the housing. Since the motion is periodic and steady state,

the nonlinear coupling forces can also be written as

. N . .
i i nwt i . nwet

fiy = Coy *+ L (Cpy cos ==+ Dpy sin =07 (382)
i N i nwt i nwt

f£iz = Cy, * i (c,, cos — + D, sin —;—) (38b)

The nonlinear forces exerted on the housing are of egual and
opposite sign to those of equations (38). To apply the har-

monic balance method, one forms the vectors of the coefficients

of cos E%E and sin E%E, for n=1,2,...,N.

The constant coefficients of the displacements of the
coupling forces are then written as follows:

For the constant term,
) (39)

where



26

{Ag} = {Aéy,Aéz,...,Agy,Agz}T
{Ag} = {Ag;l,Agzl,...,Agy,A%z}T
{cf} = {céy,céz,...,cgy,cgz}T
{2} = f{o,0,0,...,0,0}7

and the subscripts of "m" and "s" stand for the master and

slave part for a reduced algebraic system resulting from apply-
ing the harmonic balance method. The reduced out slave coordi-
nates correspond to those coordinates where no nonlinear coupling
forces exist. Therefore, the stiffmess matrix of the rotor, [K]R,

is partitioned as

(2Nx2N) (2Nx2L)

K], = [Kmm]TZ ) [Kms]$2 oL)

R Lx2N Lx2L
[Ksm R [Kss]

where N is the total number of degrees of freedom at the
nonlinearity and L is the total number of degrees of freedom
associated with linear displacements of the rotor. Equation

(39)is expanded as

0 0y _ [0

[k Jpia- b + (k 1{a} = {c | (40a)
0 0 0

[Ksm]R{Am} * [Kss]R{As} {Cs} (40b)
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Combining equations (39) and (40), the following equation is

obtained
-1 0, _ 0
[tk__1p - (10K 127k 1AL = {c ) (41)
By setting,
F1 = _ -1
the final reduced matrix can be written as
= 0, _ 0 .
(Klpiag} = {cpl (42)

Because of the bearing clearances relations already given by
equation (35), a discrete FFT algorithm will result in {Cg}
being a function of all the Fourier coefficients in equations
(37) and the corresponding cocefficients for the housing

displacements. The implicit equation form of the relation (42)

can be then expressed as

N N N N
m (Aoy,AOZ,...,Any,AnZ)} (43)

where N is the total nonlinear degree of freedom number and n
represents the retained harmonic terms. Newton-Rapshon (2nd
order) iterative method is used, and for that purpose an incre-
mental form is written in place of equation (42).

If one sets

(ad} = (a0} + {sa ]
(2} = {co} + {ac,}
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then

(K] {8a } - {ec } = {cd} - R {a)} (44)

m m

This equation is solved sequentially with an equivalent set for

the housing at each increment and iteration is used to obtain

compatible coefficient increments for the rotor and housing.
Applying the harmonic balance method to the equations of

motion (34), the cosine terms lead to

nw, 2 nw _
- (Tl {al + () [ClpIBE + (Klg{al = {c } + {g.} (45)

where
_ Nl g1 M M T
{a} = {Any,Anz,...,Any,Anz}
1 .1 M _M T
{c | = {ciy,ciz,...,cﬁy,cgz,o,o,......o}T

{gc) = 10,0,0,..., (mew?)"1,0, (mew?)Y3,0,...,0}"

if n=v (n=1,2,...,N)
= {0} if n# v

where the Y's are the nodes at which the disks are located
and M is the total node numbers and N is the node on which the
nonlinear coupling forces of the rotor to the housing exist.

Similar expressions are written for the housing.
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For the sine terms, one obtains

nw, 2 nw _
() “MIg{B} - () (cipfal + (K1 (B} = {D } + {g] (46)
where
_ 1 1 N N T
{Dn} - {Dny’Dnz’oo-,Dny'Dnz,O'coo’o}

{g.} = 10,0,0,...,(mes?) ,0,(meuf) 7,0,...,0}7

if n=v (n=1,2,...,N)
= {0} if n#v
Combining equations (45) and (46)
[s1.{c} = {w} + {u} (47)
where
}T

{w} = {cﬁy,ciz,oﬁy,ogz,o,...,o

_ N N N N M M,T
tu} = {Any’Anz’ ny’ nz'’*""/' ny’an}

To apply the reduction technique, equation (47) can be parti-

tioned as follows.

(4Nx4N) (4Nx4L) .
o Pral (fQ‘“{) (Ml ({{U“‘i) (48)
(4Lx4N) (4Lx4L) Q 0 U
[Ssm]R [Sss]R S S
where
a1 N _N T
{Qm} B {Any’Anz""'Bny’an}
_ N+1 N+1 M M,T
{Qs} B {Any rAhg ""’Bny'an}
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w = {ct ,ct .. .08 ,pN T
m ny’' "nz ny’ "nz
{US} = {0,0,---I(mewz)YiIOIOI(mewz)Yj,O,...,O}T
= T
{Um} = {O'OI'O-IOIO}
Equation (48) can be expanded as
(S riQn} * [SpelriCs} = (W} + (U} (49a)
[Sms]R{Qm} + [SSS]R{QS} = {Us} (49b)
From equation (49b)
o} = ts__124u_} - ts__1ztes 100} (50)
S ss'R S ss'R ms R '*m

Combining equations (49a) and (50), the following equation is

obtained.

-1

l[Smm]R - [Sms]R[Sss]R [Ssm]R{Cm} = {Wm} + {Um}
-1
- [Sms]R[Sss]R {Us}] (31)
Set
3 = - -1
[S]R B [Smm]R [Sms]R[Sss]R [Ssm]R’ (4N x 4N)
{Up = ol - [Sms]R[ssslﬁl{Us}' (4N x 1)
Equation (48) can then be rearranged as
[S1g{Qn} = {W,} + {U} (52)
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To apply a numerical iteration procedure, one can use the

following incremental form

e t={o }+ {s 1

m m m

=
]

tw o+ faw } (53)
Substituting equation (53) into (52)

e } - {aw } = {w }+ {U}- 81510 ! (54)

m

Since the equation (54) is obtained only for one harmonic term,
one can expand equation (54) for general retained harmonic

terms

(51 1ee V- {aw = fu F+ T }- 51,0 (55)

n R mn mn mn n n

where n = 1,2,...,N.

Equation (55) represents the cosine and sine incremental
terms and equation (44) represents the incremental constant
terms, so one can combine these equations. {an} and {Am}
contain the final solution forms which are solved by the
Newton-Rapshon method. The overall incremental form for the

rotor system will be as follows:

[ri tar} - {av}h = {z} (56)

1 1 2 2 N N
A = 14 4 A A A
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1 1 1 1 N N
AAly[AAlZ[ABly’ABlz[oon’ABly’ABlz,
1 1 1 N N ,T
AAnY,AAnz,ABny,ABnZ,...,ABny,Aan}
{A\)} = {Acéy'CA(ljz'Acgy'Acgz""’ACIC\)IY'ACISZ'
N
ACiy,ACiz,ADiY,ADiZ,---,AD§YIAD12,
1 1 1 1 N N ,T
ACnyIACnZ'ADnyIADnz’oon[ADny,ADnz}
and
[K] ;! . . 0
o 87 . 0
[T], = R
R . . . .
0 . L N ) [Sn]R
where

[E]P is (2N x 2N) and [EI]P is (4N x 4N) for (i = 1,2,+..,n).
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From equation (56), {Av} is written with partial deriva-
tives of {&r}. The partial derivative terms yield the Jacobian

matrix, so one can finally obtain the following equation

{av} = [p1{c} (57)
r W
where
3Cl 3C1 3Cl 3C1
Oy Oy Oy Oy
1 3al 352 "t ggN
AOy AOz AOy an
501 3l 3~1 5~1
COz COz COz COz
aAl aAl . 3A2 T aBN
(p] = ?y ?z Oy . nz
apN apN apN apN
nz nz nz nz
N ol 32 T apN
Anz AOz AOy an
L -

where the superscript stands for the degree of freedom number
while subscript stands for the retained harmonic term in y or z
direction.

The [P] matrix can be determined using numerical differen-
tation of the discrete and inverse discrete FFT method. The
matrix has to be updated at each iteration step until it
converges. The steady state solution procedure for flexible
housing is the same as for the rotor system as outlined above.

After calculating the rotor response using an iteration
procedure, the coupling between rotor and housing are auto-
matically calculated. These nonlinear coupling forces are then

applied to the housing system to update the absolute housing
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displacements and nonlinear coupling forces. Another iteration
process is used to obtain once more the updated rotor response
and then iterate until both rotor and housing responses have

the same steady state convergent values.

3.3b Determination of multiple solutions: A global

Newton's method

A method is further developed and adapted to rotor systems
which is capable of locating all possible multiple solutions
for the rotor's resbonse. The method uses a double dogleg
scheme (Dennis and Schnabel, 1979) with a local minimum
algorithm to determine the solutions. A tunnelling method,
developed by Levy et al. (1978) is further developed and used
to remove the solutions already found from the formulation.
Preliminary testing of the method showed the method to be
capable of obtaining multiple solutions of the Duffing type
equations.

An exposition of this method and preliminary results on

its application will be published in due time.
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4. NUMERICAL EXAMPLES AND DISCUSSION

4.1 Transient Response

The present convolution method is applied to a modified
version of a rotor model constructed by Davis et al. (1984).
The model was proposed to represent a simplified generic model
of the space shuttle main engine turbopumps. The parameters
and coefficients of the present generic model (shown in Fig. 5)
are given in Tables 1 and 2. The imbalance forces are taken as
shown in Fig. 5. |

Response of the generic rotor-housing model at the bearing
location is determined for the hypothetical start-up-shutdown
case shown in Fig. 6. For the start-up case, from 0 to .0.01
seconds, using an increment of 1x10=3 sec., a comparison was
made of the computer CPU time (on a VAX 8300) for the Runge-Kutta
4th order and the present convolution method (Fig. 7). It is
seen that the hybrid convolution method is approximately'tWice as
fast as the 4th order Runge-Kutta method. In addition, a desired
accuracy can be met by the convolution method using a much
larger time step than that required by the Runge-Kutta method.

Figs. 8-a and 8-b show the radial bearing force in bearing
1 for the linear and nonlinear (in presence of a clearance)
cases, respectively, for the fast start-up of Fig. 6, 0-0.3
seconds. The initial conditions were taken as zero.

For the nonlinear cases, the radial force in bearing 1

has a peak close to ¢ = 2600 rad/sec. (24830 rpm) during



36

Z 5 F Fe
T Y T/’r T/’FJ s
1 2 ra_’ 4 s r—s—f 7 8 m 10
O WY T S T N N S N S
| L L
) 8
Ka Ka
) 12 13 14 15 16 17 18 13 Ro
HUSNGG & 6 & ¢ ¢ ¢ ¢ 4
"=, Kszz
~ VI VI

ROTOR: Shaft diameter: OD = 3.0 inches, ID = 0.0 inches
Material: Steel, E = 3.0 x 108 psi
Jaint length = 3.0 inches
Rotor length = 27.0 inches

HOUSING: Housing/Rotor weight ratio = 6/1

(ENg = 1.1928 x 108 Ib-in3
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Figure 5. The generic model.



Table 1. Parameters of the Generic Model
Mass Imbalance Moment of Iinertia (Ib-ln-ucz)
(Ib-ucz /in) (In) Polar Diametrical
Disk 1 0.0259 0.002 0.028 0.0159
Disk 2 0.0389 0.002 0.193 0.101
Disk 3 6.0518 0.002 1.0057 0.5078
Table 2. Ccefficients of the Generic Model
Kyy Kz Kay= Kyx | Sy Side Force (ib)
(1b/in) (lotin) (ib-sec/in)] Y-direction Z-direction
DISK 1| 1.0x10° | 1.5x10* 8.3x10" | 4.95x10°6 32 | -2.806x10° 5 j2
DISK2| -8.9x10° | -4.0x10° 1.0 6.117x105 ¢2 | 7.281x10 5 ;2
DIsKk3 | 8.7x10% | 1.9x103 2.3 2.379x10 9 42 0
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Figure 7.

CEU plot of hybrid method and Runge Kutta methoc.
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start-up and a much higher peak at % = 3560 rad/sec. (34000
rpm) during the (slower) shutdown in Fig. 9. The linear system
with zero bearing clearances shows higher bearing load peaks
than with the nonlinear system. In the linear case, the load
peak occurs, as expected, at the critical speed. For the
nonlinear cases other results, not shown here, show that the
bearing forces at bearing 2 are consistently higher than those
at bearing 1.

Figs. 10-a and 10-b show the Y-displacements of the rotor
relative to the housing at bearing 1 for the start-up condi-

tions for the linear and nonlinear cases, respectively.

4,2 Periodic Response

The harmonic balance/FFT method was used to generate
forced nonlinear periodic responses of the generic model (Fig.
5) in the range of 0-40,000 rpm. Figure 11 shows the funda-
mental synchronous responses at the two critical speeds to
occur around 1900 rad/sec an 4300 rad/sec. The figure shows
the radial displacements of the rotor relative to the housing
at the left bearing. The critical speed map is depicted in
Figure 12 for the generic model in absence of bearing clear-
ances. The gyroscopic terms are included which are shown to
raise the forward critical speeds and lower the backward criti-

cal speeds. The figure shows the first two critical speeds to
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be exactly the same as those of the linear case obtained using
the harmonic balance/FFT method. Numerical calculation is
performed to investigate the existence of subharmonic
responses.

The trajectory of the shaft center of a 1/n order subhar-
monic response lies in the region bounded by circles with radii
which are determined by the harmonic and subharmonic ampli-
tudes. The trajectory touches the bounded circles at (n-1)
points for forward whirl and (n+l) points for backward whirl
(See Tondl, 1973). The shaft center trajectory is studied to
identify the subharmonic responses and to compare the amplitude
between the harmonic response and the 1/n order subharmonic
response with various values of the side force, gap size and
eccentricity near the critical speeds. To allow the occurrence
of the subharmonic response, the damping is set to a small
value for all cases. The results are shown in Figures 13, 14,
15 and 16. These figures show that all subharmonic responses
occur around the second critical speed and that all are of the
1/2 order. 1In Figure 13, the harmonic and subharmonic ampli-
tudes are almost of the same magnitude for a small side force.
In Figure 14, the harmonic response becomes dominant when
reducing the bearing clearance size. On the contrary, the 1/2
order subharmonic response becomes larger than the amplitude of
the harmonic component by increasing the clearance size as can
be seen in Figure 15. The gap size has a significant effect on

the existence of the 1/2 order subharmonics in the HPOTP model
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regardless of the side force. In Figure 16, the side force is
raised to ten times that of Figure 13. 1In that case, the
results show the amplitude of the subharmonic response becoming
slightly larger than the harmonic response. This result
reveals that the side force also has some influence on whether
any subharmonic response occurs.

More detailed investigation comparing the effects of the
side force and gap size is studied and the results are shown in
Figure 17. The figure shows that the side force has a signifi-
cant effect on the existence of the 1/2 order subharmonic
response. Around 200 lbs. side force and 0.5-0.7 mils of gap
size is the region which induces the large amplitude of the 1/2
order subharmonic. Excessive side force, larger than 400 lbs.
will cause a reduction of the subharmonic responses.. With
constant gap size and eccentricity, there exists a certain
range of side force region in which larger subharmonic response
would occur. This agrees with results presented by Choi and
Noah (1987).

The effect of eccentricity on the existence of the 1/2
order subharmonic response with variation of the side force is
shown in Figure 18. The figure shows that the eccentricity has
the effect of shifting the location of the maximum subharmonic
response to the right. The side force ranges at which the
maximum 1/2 order subharmonic response occurs are different for
each eccentricity. The figure also shows that the larger

eccentricity is the lower the subharmonic response will be.
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This may be explained by the fact that larger response
amplitude due to larger eccentricity induces more contact
causing the system to become relatively weakly nonlinear
resulting in a lesser subharmonic amplitude. It may therefore
be necessary to reduce the gap size and side forces in any
proposed design or maintainance criteria in order to eliminate

dangerous subharmonic responses.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The hybrid convolution approach developed in this study is
shown to provide an efficient closed form integral formulation
for determining the transient response of linear systems
coupled through local nonlinearities. A typical application in
which the present method proved quite effective is the determi-
nation of the transient response of a generic model of the high
pressure oxygen turbopump (HPOTP) of a space shuttle main
engine (SSME) in presence of bearing clearances, constituting
the local nonlinearities. Substantial savings in computation
time were achieved as compared with direct numerical integra-
tion techniques.

The use of the transition matrix allows the representation

of rotors involving skew-symmetric matrices of gyroscopic loads

or other nonconservative systems with general velocity coeffi-
cient matrices. A Duhamel integral would represent quite
effectively other systems with classical modes, such as the
housing of the HPOTP or other nonrotating, proportionally
damped structures. The convolution formulation allows accom-
modating with ease changes in the nonlinear or linear coupling
parameters among the various linear subsystems involved.
Possible improvement of the method could be achieved
through replacement or optimization of the iteration procedure

utilized in this study.
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The results shown here show that the presence of bearing
clearance can drastically alter the rotor response in the
HPOTP. As noted by Ishida et al. (1987) for a simpler system,
it is more difficult to go through a critical speed in the
presence of the nonlinearity.

An effective numerical harmonic balance algorithm for
determining the steady-state forced vibration of a highly
nonlinear multi degree-of-freedom rotor system has been devel-
oped. The results show that the method is computationally
superior to that of any direct numerical integration method.

In addition, the complicated nonlinear steady-state periodic
motions of multi degree-of-freedom rotor systems can readily be
studied using the present method.

It is shown that dangerous subharmonic resonances may
occur for the HPOTP in the presence of bearing clearances, mass

eccentricities, and fluid side forces. The results show that

the ranges of the above three parameters are mutually related

in influencing the subharmonic occurrence. 1In particular, the
bearing clearance size to shaft amplitudes at the bearing, the
local stiffness at the bearings, and the side forces, were
fdund to highly influence the degree of nonlinearity in the
rotor system and therefore determine its response and

stability.




56

5.2 Recommendations

It is recommended that future studies should include the

following:

1.

Represent rotor and housing models in terms of their
linear modal coordinates as utilized in the turbo-
pumps of the SSME.

Develop computational-Floquet or alternative analysis
techniques for determining the stability of the
periodic synchronous and subsynchronous response of
rotor-housing systems. Further refine the computa-
tional harmonic balance method for achieving more
controlled accuracy, particularly within the reso-
nance parameter regions.

Develop method for determining the aperiodic response
and criteria for detecting onset of probable chaotic
motions.

Perform extensive parametric studies of the steady
state (periodic, aperiodic and chaotic) and transient
responses of the actual SSME turbopumps to completely
characterize their dynamic behavior for existing and

proposed design modifications.
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APPENDIX A

DISCRETIZED FORM OF TRANSITION MATRIX FORMULATION

The solution of the first order differential equations in

vector form, or

fu}l = flalfu} + {p} (A1)
can be written as

fucey} = ety + el ipiey ) an (A2)

0

The solution of Eq. (A2) is casted in discretized form as

b= et ucey) + g firr o017 oy | ae,

fu(t
i

i+l)
(A3)
where T=tj+] - ti
Take the forcing function as linear within each increment T, or

t-t.
{P(e) }+ —— ({P(t;,) ) - {P(e)}) (A4)

{P(t) }

Let [o(t)] = et ®T

Substitute (A4) into (A3) to yield

{utt,

t. o
l+l)} = [Q(T)]{U(ti)}+ Iti"'l e[a](tl+1 t)

[{P(t;) + = (Pt 1) - {P(ti)})] dt

i+l
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t, L
= (D1 {ult)} + (fti+l el el (14178 qt J{p(e )}
ti+l o {P(t. )} - {P(t))}
+ (It e[a](t1+1 t)(t-ti)dt) i+l , i
’ (AS)
[a](ti+l-t) = [a],T- [a](t-ti),
Then
ti+l o ti - s
[ glaltiarmtigy o P lalT-lal(emty) gy
ti £y
ti+l - —t -
- (I 1+ e[Q]T [a]l (t ti) d[d]t) . [a) 1
ti
i+l - —t -
= -y el TTle ) gy — el (e-ts) })a) 7
ti
o lalT-fal(e-ty) [FEFL -

ti
(eledT-lel(tier-ti) _ [alT-lal(ti=ti)y . [o)~)

(0] _ glelT) ;-1

= -

o lalT _ 1

= [“I.1)[a]"

= (O(T) - [*I.)(a]™? (A6)
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Similarly,
i+l [al(tie1-t) Eivl [a]T-[a](t-t;)
J e i+l (t-tj)dt = [ e 1 (t-t,)dt
ti ti

t' -
olalT | i+l _lel(ty t)(ti-t) 4 (ti-t)
ti

t, . -
= lodT (prirl Ll (it g eimt) d {[al(ti-t)}) (@] ™2
ty

= elIT(e IT Loy - [~I)} + [I01)1al”2

= - [el7lT+ (o(T) - ["I.1)(a] 2 (27)
Substituting (A6) and (A7) into (AS5) yields
{ut,,p} = temi{utep} + (1M1 - Gl (pep} +
L iPe ) F = {Pe)} _
a7t — A 1) o T ece g, ) - {Ree})

(A8)
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APPENDIX B

DISCRETIZED FORM OF THE DUHAMEL INTEGRAL SOLUTION

Consider the uncoupled set of differential equations in

terms of the generalized coordinates {q}

{a} + o1{a} + Ca{al = {2} (81)
where

[D] = [7C.) = [T28w (]

[TA] = [‘wisl wnh: undamped natural freguency

The solution of (Bl) is

-gwnt 1 e-gwnt

cos wgt<l{q(0)} + [‘mg sin wgt.]e

{q(t)} = [e

({g(o)} + gwyiq(o)})

t
] — e *en{t"Tgin wy(t-1)1{P(1) Jar (B2)

where wg = damped natural frequency.

Let {h(t)} = | [“;% e~ Eonlt=Tgip wg(t-1)]{P(T1)}dr (B3)
0

P(t) is linearlized so that

T-t,

— l -
{pee)} = {py + —5= (Py g - PP
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Substituting P(t) into (B3) and casting it in discretized form,

one obtains

t.
{h(t)} = {n(t} + J 1*1 [~;é e~fen(t=Tlgin uylt-t) -
ti
r-ti

{Pi+ 7 (Pi,; = Py)ldr (B3)
or

{h(t)} = {h(t{)} + {ah(t)} (B4)
For the velocity,

{};(t)} = {f.l(ti)} + {Al'.l(t)} (B5)

Let h(t) and ah(t) stand for elements in vectors {h(t)} and

{ah(t)}, respectively, and P; for an element of {P;}, then

ti+l -
ah(t) = Ul J e 8un{t=T)gy wg(t=-1)
ti
T~t.
[Pi + (Pi+1_ Pi)]dt

t.
El c"fwn(t-1) f i+l _Ewpt ;. wg(t-1) o
d t;
-t
T

[Pi + (P - Pi)]dr (B6)

i+l

Ah(t) = Bé e~éunt (INT1 + INT2) (B7)
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In INTI1,
Bi+l Ewpt
/ e~“nt sin wg(t-1) dt
ti
ti+1 Ewnpt
= / e’ N (sin wgt cos wgT - cos wgt sin wgt) dt  (B8)
ti
ti+l ti+l
= sinbt | @' cos btdt - cos bt [ e?(sin bt)dTr (B9)
t; ti

where a = fwp and b = wg

Then, from eq. (B6),(B7) and using equation (B9 ) (B10)
t. i+l
= -1 - Eupt -
INT1 = [P, T (Pj,q ~ Py)I ft' e sin wg (t-71) dr
i
t; ; .
_ _ i _ sinbt ati+] . : ,
= [P, 7 (P Pi)]{gi:gi [e (a cosbtj+1 + b sinbtj+1)
- e3ti(a cosbty * b sinbtj)]
- cosbt [e3Ti+]l (4 sinbtj4+] + b cosbtji4])
2.2
a“+b
- e3ti(a sinbtj - b cosbtj)l} (B11)
In INT2,
ti+l EwnT
/ 1e>“n’ sin wg (t-1) dt
ti

ti

-
-

(sin wg t cos wg 1 - cos wgt sin wgt) 4T
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. i+l ar iyl ar .
= sinbt f T€ cosbt dt - cosbt f 1€ sinbtdq (B12)
ti ti
. art
= §%£9% {TeaT(a cos bt + b sin by) - 3 5
a“+b a“+b
(a2 cos bt + 2ab sin bt - b?% cos bt)} ti+l
ti
. arTt
9%59% {reat(a sin bt - b cos bt) - ; 5
a“+b a“+b
(a2 sin bt - 2ab cos bt - b2 cos bt)} ti+l
ti
From eq. (B6),(B7) and rearranging
P. -P- t1+1
INT2 = E—%,——}' f Tegwnr sin md(t"'[)d‘r
ti ;
Pi+17Pi  sinbt at; .
T = [t, e 1+l(a cos btj4] + b sin btj41)
a“+b
eati+l 2 . 2
- Ty (a“ cos btj+] + 2ab sin btj4+) - b" cos btjsq)
a“+b
at; cati
- tj e""! (a cos btj + b sin btj) + 55— -

a +b

_ cosbt

2,.2

(a2 cos bty + 2ab sin bt, - b2 cos bt,)]
1 1
a“+b

(t, e@ti+l (a sin btij+1 - b cos btj+))

i+l
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- Effiii (a” sin bt. - 2ab cos bt - b2 sin bt )
a2+b2 i+] i+l i+l

: atj
-t et (a sin bti - b cos btj) + e2 5 -
a“+b
(a? sin bt - 2ab cos bt; - b2 sin bt;)1} (B13)

The sum INT1 + INT2 is calculated from equations(Bll)and({B13).

Let
INT1 + INT2 = ﬂg—t—’;‘— . SUMS -9-‘%—1?5— . SUMC (B14)
(a“+b*) (a“+b*)
where
ti at;
SUMS = [Py - — (P, ; ~ P;)][e""1*]l (a cos btj4) + b sin btjs))
. (P. .-P.)
- et (a cos btj + b sin btj)] + l+% 1

atj+l -
[t 1 © (a cos bti+l + b sin bt.+l)

i+ i

atj+]
- & _— - (a2 cos bti

a2+b2

+ 2ab sin bt. - b2
i+

1 cos bti+1)

+1

atj

a2+b2

e

- t, eati (a cos bt, + b sin bt.) +
i i i

(a2 cos bti + 2ab sin bti - b2 cos bti)]

= 3ti+l (a cos bti+1 + b sin bti+l)
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P

/"‘—__"‘—~———/\EZL_——~"‘—_“‘“~\
t. t.
i i+l
Py = —F (Pyyy = Py) + —F (P, = Py)]
P. -P,
i+1 71 1 2 .
+ T 75 (a“ cos bti+l + 2ab sin bti+1
a“+b
- b2 cos bt )(—eati+1)
i+1
P, -P,
- Pi eatl (a cos bti + b sin bti) + l+é 1 21 5
a“+b
(a? cos bt; + 2ab sin bt - b? cos bt,) eti (B15).

t,
SUMC = [P; - —3 (P,,; - P.)1[e?i*] (a sin btjy] — b cos btjyq)
. (P, ,-P.)
- e8ti (a sin bty - b cos btj)] + __ii%,_i_ .

atj+] i
[t e (a sin bti+l - b cos bti+l)

i+l

atji+1
-£ "~ " (a® sin bt,,, - 2ab cos bt, . - b

a2+b2 1

2 .
sin bti+1)

, atj
- t, eatl (a sin bti - b cos bti) + e2 5
L a“+b

(a2 sin bti - 2ab cos bti - b2 sin bti)]

e3ti+l (4 sin bt;,; = b cos bt )
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P —
(b, - £y (Py417Py) . tivl ‘Pi+1_Pi)]
i T T
P. -P,
i+1 i 1 2 .
+ T 5> (a® sin bti+l - 2ab cos bti+l
a +b
- b2 sin bt )(-eati+l)
i+l
P. -P,
- P, eatl (a sin bt., - b cos bt,) + i+l 1 1 .
i i i T 2. .2
a +b
(a? sin bt, - 2ab cos bt; - b? sin bt,) eti (B16)

Substitute INT1 and INT2 in eqg. (B1l5) and (Bl6) into eqg. (B7)

and recall that a = épwp and b = wy, one arrives at

_ eT3t eati+l gip pt e~at Jati+l oo pt
eh(t) = 2,2 Ay ~ 7 2 Bin
b(a"+b™) b(a+b*)
(B17)
where
Ai+1 = Pi+1 (a cos bti+l + b sin bti+1)
p. - P,
i+1 i 2 ) 5
T(a2+b2) (a® cos bti+l + 2ab sin bti+1 b® cos bti+1)
P. - P,
+ —ii%——i—i e™aT (a2cos bt;+ 2ab sin bt,- b2cos bt,)
T(a“+b“)

- p, 72T (a2 cos bt, + b sin bt,) (B18)
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B. 1 = Pi+1 (a sin bti+1 - b cos bti+ )

i+ 1

P P

i+1 ~ i 2 . 2 .

- —=—=— (a” sin bt, - 2ab cos bt, - b® sin bt. ., .,)
T(a2+b2) i+l i+l i+1
P. - P.

+ —ii%——i—i e_aT (azsin bti— 2ab cos bti— bzsin bti)
T(a“+b“)

-aT .
- Pi e (a sin bti - b cos bti) (B19)

Take derivative of (Bl17),

L ] ’ . - t
Ah(t) = ————— ( - ae sin bt + b e a cos bt) A,
b(a2+b2) i+l
atj+] - -
+ & (ae at cos bt + b e at sin bt) B, (B20)
2,,2 i+1
b(a“+b“)
For t = NT, from (B3), N is an arbitrary integer,
E N1l _-fup(t-t) _.
h(t) = [ [—= e >"n sin wg (t=1) P(tN dx
t=NT o «d
t
= [ [*] dat
0
T 2T NT
= [ [¢1dt + [ [+)1dt + ...+ ][ [-] d=
0 T (N=-1)T (B21)
-at . -at
Let fs(t) = &—SIBDBE  go(y) = & €08 bt (B22)
b(a“+b“) b(a“+b“)
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Substitute eqg. (B17), (B22) into (B21) yields

hit) = fs(t) e37 A, - fo(t) eaT B,
£=NT
+ £s(t) ea(ZT)Az - fo(t) ea(ZT)Bz
+ v Es(t)e3NT A, - £o(t) N7 By,
_ aT az2T aNT
= fs(t) [e A1 + e A2 + ... € AN]
+ fo(t) [eaTB1 + 22T By + ... 4 e2NT By,] (B23)
since e 3% = ¢™@NT 41, (B22) for t = NT, then eq. (B23) becomes

in bt -a(N-1)T -a(N=-2)T
hit), . = —=20 DF o A, + e A, + vue. + Al
t=NT b(a2+b2) 1 2 N
+ —59%~9%~ [e—a(N-l)T By + e a(N-2)T By + ... + Bl
b(a“+b“)
(B24)
= —Eig-ﬁg— . [EA T+ —293—9%- (EB,] (B25)
b(a“+b<) b(a“+b“)
Now, consider t = (N+1)T, equation (B2l) is written as
2T
h(t) o ne1yT = fo [+ @t + [ [-1d7+ ....+
NT (N+1)T
J [«] dT + [ [+] @t (B26)

(N-1)T NT
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Equation (B23) is then written as

- aT aNT a(N+1)T
h(t) o (e1) = ES(E) [e77 Ap + vuvs +e Ay t+e Aviq]
aT aNT a(N+1)T
+ fc(t) [e B1 + teese + € BN + e BN+1] (B27)
Since e 2%t = ma(N+L)T eq. (B26) takes the form
sin bt -aNT -a(N-1)T
h(t), _ = —————— e A, + e A, + ... + A ]
t=(N+1)T b(a2+b2) 1 2 N+1
cos bt -aNT -a(N-1)T
t——s 5. e By +e By + «vr * Byl
b(a“+b“)
= _Eig—é%— [e-8T (ma(N-1)T Ap + e"a(N=2)T By, 4 ..e B + Ay ]
b(a“+b")
+ coszbt2 [e—aT (e~a(N—1)T Bl + e-a(N—Z)T BZ ... BN) + BN+1]
b{a“+b™)
sin bt -aT
= ————=— Je + EA._ + A ]
b(a2+b2) N N+1
cos bt -aT
— [e - EB + EB ] (B28)
b(a2+b2) N N+1

From (B25) and B28) the folldwing equation for t=(N+2)T can be

written as

_ _sin bt -aT |
Blt) o (n+2)T = b(a2eb2) fe EA *

N+1 T Py+2]



cos bt ~-aT
+ e [e « EB + B ]
b(a2+b2) N+1 N+2
where
_ —aT |
EAner = € EAy * Byy
_ _- aT |
EBysp = © EBy * Byyy
and EAN, EBN are defined in eq. (B24) and (B25), they are:
_ _=a(N-1)T -~a(N=2)T
EAN - e Al + e A2 + e & s 0 AN
_ —a(N-1)T -a(N-2)T
EBN = e B1 + € B2 P BN
And Ay BN are defined in eq. (B18), (B19).
Finally, one arrives at
h(e) = SALDBE gy 4 SOS DL pp
b(a“+b*“) b(a“+b“)
; t = NT, T is the time step

where EAN, EB., are defined in (B31) and can be calculated

N

directly from previous EAg , and EBy_, of time t = (N-1)T,
that is,
_ —aT |
EAy = € EAy_ 1 t+ Ay
- —aT
EBy = e EBy_; + By
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(B29)

(B30)

(B31)

(B32)

(B33) \
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The same procedure can be followed to obtain h(t) starting from
eq. (B20) with the result

L] - » + .

h(t) = a sin gt : b cos bt . EAy + a cos bt2+ g sin bt . EBy
b(a“+b™) b(a“+b®)

; t = NT, T is time step _ (B34)

Eg. (B32) is written in vector form and is substituted into

(B2) to yield

{ate) } = [e”>“nt cos wat.l{q(0)} + L &5t gin wgt .l *
W,

d

({qc0) } + &wy {a(0)})

+ { 51; b; CEA + cos bt . EB
b{(a“+b”)

N b(a2+b2)
For {q}, derivative of (B2) for the first two terms at the right

t

N} , NT (B35)

hand side is taken and then substitution is made of eg. (B34)
into the resulting relationship to yield

3 - -~ "Ewnt .

{qit)y} = [~e (Ew, cos wgt + wg sin wat <) {q(0)}

[‘e'gwnt (- Eé Ewn sin wgt + cos wgt).]

+

(lq(o)} + guy {a(O) D

{-a sin bt + b cos bt

a cos bt + b sin bt
b(a+b?)

b(a+b?)

+

+
EAN

EBy |

; t = NT (B36)
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Equations (B35) and (B36) are written in discretized form, and
recalling that a = &nwy, b = wg, t = tj4+] = (N+1)T, one can

write

{att; )} = 1773+ cos bt 1{q(0)}

+ [0 % e™@%i+1 sin b, 1 ({q(0)} + afq(0)})

sin bt, cos bt.
i+l i+1
+ . EA + ————— . EB } (B37)
b(a2+b2) N+1 b(a2+b2) N+1

: = S - -ati""'l
{Q(ti+1)} [“~e (a cos bti+1

+ b sin bt; ,.1{q(0)}
+ [‘e—ati+1 (- % a sin bti+1 + cos bti+1)\]({q(0)} +

a{q(0)})

-a sin bti+l + b cos bti+l

+ EA
b(a2+b2) N+1
a cos bt, + b sin bt,
+ N 1+l . eBy,, ! (B38)
b(a“+b™)
where

EA, EB are defined in (B30),(B31) and A, B in (B30),(B31l) are

defined in (B18), (Bl19).




78

APPENDIX C

FOURTH ORDER RUNGE-KUTTA WITH ITERATION

The equations ofmotion for both housing and motor can be

cast in the first order form
y = £f(t,y) (Cl)

For the coefficients Ky and K3 of the 4th order Runge-
Kutta Method, the coupling forces in the right hand side of
equation (Cl) are assumed to be linear within each time incre-
ment T = tj4] - tj. The physical coupling forces, {Fr} at
time tj; + T/2 are assumed then as
T
2

.
{Frley + 30b = 5 (Frleg) + Frleg )






